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RECAP: Page Replacement Algorithms

● Optimal

● FIFO

● Random 

● Approximate LRU (NRU)

● FIFO with 2nd chance

● Clock: a simple FIFO with 2nd chance

● Enhanced FIFO with 2nd chance
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Whose pages should be replaced?

● Global replacement:
● All pages from all processes are lumped into a single replacement pool

● Most flexibility, least (performance) isolation

● Local replacement
● Per-process replacement:

● Each process has a separate pool of pages

● Per-user replacement:
● Lump all processes for a given user into a single pool

● In local replacement, must have a mechanism for (slowly) changing the 
allocations to each pool
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Why we need paging?Handling low memory

• Suppose you have 8GB of main memory

• Can you run a program that its program size is 16GB?
• Yes, you can load them part by part

• This is because we do not use all of data at the same time

• Can your OS do this execution seamlessly to your application?
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Why we need paging?Efficient use of 
memory!

• Process exhibit locality - not all pages of a process need to be in 
memory!

• Bringing in only required pages allows us to execute multiple 
processes seamlessly:

• Increases CPU utilization
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Increasing multiprogramming increases CPU 
utilization!!?
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What happens when there is not enough 
physical memory?
● Suppose many processes are making frequent references to 50 pages, memory 

has 49

● Assuming LRU

● Each time one page is brought in, another page, whose content will soon 
be referenced, is thrown out

● What is the average memory access time?

● The system is spending most of its time paging!

● The progress of programs makes it look like “memory access is as slow as 
disk”, rather than   “disk being as fast as memory”
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Thrashing!!
● Thrashing ≡ a process is busy swapping pages in and out
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Thrashing can lead to vicious cycle

● If a process does not have “enough” pages, the page-fault rate is 
very high.  This leads to:

● low CPU utilization

● OS thinks that it needs to increase the degree of 
multiprogramming (actual behavior of early paging systems) 

● another process added to the system

● page fault rate goes even higher

Vicious
Cycle
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Thrashing!!
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What causes Thrashing!?

● The system does not know it has taken more work than it can handle

● Virtual memory bites back!

● Mitigating Thrashing:

● Run fewer programs.

● Dropping or degrading a course if taking too many than you can 
handle ☺
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Demand Paging and Thrashing!?
● Why does demand paging work?

● Data reference exhibits locality

● Why does thrashing occur?

● Σ size of locality > total memory size
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Intuitively, what to do about thrashing?

● If a single process’s locality too large for memory, what can OS do? 

● e.g., pin most data (hotter data) in memory, sacrifice the rest

● If the problem arises from the sum of several processes?

● Figure out how much memory each process needs – “locality”

● What can we do?

● Can limit effects of thrashing using local replacement

● Or, bring a process’ working set before running it

● Or, wait till there is enough memory for a process’s need
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Key Observation

● Locality in memory references

● Spatial and temporal

● Want to keep a set of pages in 
memory that would avoid a lot of 
page faults 

● “Hot” pages

● Can we formalize it?
# pages in memory

# 
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Working Set Model – by Peter Denning 
(Purdue CS head, 79-83)

# pages in memory

# 
pa

ge
 fa
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ts

Working set

● An informal definition:
● Working set: The collection of pages that a process 

is working within a time interval, and which must 
thus be resident if the process is to avoid thrashing

● But how to turn the concept/theory into 
practical solutions?
1. Capture the working set

2. Influence the scheduler or replacement 
algorithm
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Working Sets

● The working set size is num of pages in the working set 

● the number of pages touched in the interval [t-Δ+1..t].

● The working set size changes with program locality.

● during periods of poor locality, you reference more pages.

● Within that period of time, you will have a larger working set size.

● Goal: keep WS for each process in memory.
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Working Set Model

# pages in memory

# 
pa

ge
 fa
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● Usage idea: use recent needs of a process to 
predict its future needs
● Choose Δ, the WS parameter

● At any given time, all pages referenced by a process 
in its last Δ  seconds comprise its working set

● Don’t execute a process unless there is enough 
memory to fit its working set

● Needs a companion replacement algorithm
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Working Set Replacement Algorithm

● Main idea
● Take advantage of reference bits
● Variation of FIFO with 2nd chance

● An algorithm (assume reference bit)
● On a page fault, scan through all pages of the process
● If the reference bit is 1, clear the bit, record the current time for the 

page
● If the reference bit is 0, check the “last use time”

● If the page has not been used within Δ, replace the page
● Otherwise, go to the next page
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Working Set Clock Algorithm (assume 
reference bit + modified bit)

● Upon page fault, follow the clock hand

● If the reference bit is 1, set reference bit to 0, set the current time for 
the page and go to the next

● If the reference bit is 0, check “last use time”
● If page used within Δ, go to the next

● If page not used within Δ and modify bit is 1

● Schedule the page for page out (then reset modify bit) and go to the next

● If page not used within Δ and modified bit is 0

● Replace this page
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Challenges with WS algorithm 
implementation

# pages in memory

# 
pa

ge
 fa

ul
ts

● What should Δ be?

● What if it is too large?

● What if it is too small?

● How many jobs need to be scheduled in order to keep CPU busy?

● Too few 🡪 cannot keep CPU busy if all doing I/O

● Too many 🡪 their WS may exceed memory
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Working Sets in Real World

W
orking set 

size

transition, stable
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More Challenges with WS algorithm 
implementation

● Working set isn’t static

● There often isn’t a single “working set”
● e.g., Multiple plateaus in previous curve (L1 $, L2 $, etc)

● Program coding style affects working set

● e.g., matrix multiply

● Working set is often hard to measure
● What’s the working set of an interactive program?

● How to calculate WS if pages are shared?
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Storage Devices

● Devices used to store data
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Storage Technologies

● Tapes
● Magnetic Disks
● Flash Memory
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Tapes

● Low-cost, highly-reliable storage.

● Slow access: ~30MB Per Second.
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Magnetic Disks

● (Used to be) De Facto standard for storage.

● Medium access: ~150MB Per Second.

● Relatively high failure rate (vs Tape).



26

Magnetic Disk
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Disk Components
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Surface Organized into Tracks
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Tracks Broken into Sectors

● Disk accesses in the granularity of a sector (usually 512KB)

● This I/O interface is called block I/O interface
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Disk Head Position
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Rotation is Counterclockwise
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About to Read Blue Sector
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After Reading Blue Sector
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Red Request Scheduled Next
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Seek to Red’s Track
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Seek to Red Sector to Reach Head
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Read Red Sector
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Real numbers for Modern Disks

● # of platters: 1-8 

– 2-16 surfaces for data 

● # of tracks per surface: 10s of 1000s 

– same thing as # of cylinders 

● # sectors per track: 200-1000 

– so, 100-500KB 

● # of bytes per sector: usually 512 

– can be chosen by OS for some disks
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Response Time for Disks
● Access time: (service time for a disk access) 

● Once command is received, how long it takes to get the data to OS.

– Seek + Rotation + Transfer 

● Response time: 

● Commands may be queued!

– Queue time + Access time
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Seek Time

● Time required to move head over desired track 
● Physically moving the head, not electronic => slow!

● A seek has up to four components 
– accelerate 

– coast at max velocity 

– decelerate 

– settle onto correct track

● Seek time depends on workload
● For random workloads, longer seek time
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Rotational Latency

● Time required for the first desired sector to reach head 

● Depends on rotation speed 
– measured in Rotations Per Minute (RPMs) 

● Computing average rotational latency 
– for almost all workloads, we can safely assume that there is an equal likelihood of landing on any sector of the 

track 

– this gives equal probability of each rotational latency 

● from 0 sectors to N-1 sectors 

– thus, average rotational latency is time for 1/2 revolution 

– e.g., for 7200 RPM 

● one rotation = 60s / 7200 = 8.33 ms 

● average rotational latency = 4.16 ms
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Modern Disk Performance Characteristics

● Seek times: 0.5-15ms, depending on distance 

– average 5-6ms 

– improving at 7-10% per year 

● Rotation speeds: 5600-15000 RPMs 

– improving at 7-10% per year 
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Disk failures
● Disks fail more often.... 

● When continuously powered-on 

● With heavy workloads 

● Under high temperatures 
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How disks fail?
● How do disks fail? 

● Whole disk can stop working (e.g., motor dies, firmware errors) 

● Transient problem (cable disconnected, firmware errors) 

● Individual sectors can fail (e.g., head crash or scratch) 
● Data can be corrupted or block not readable/writable 



45

Fixing disk errors
● Disks can internally fix some sector problems 

● ECC (error correction code): Detect/correct bit flips 

● Retry sector reads and writes: Try 20-30 different offset and timing combinations for heads 

● Remap sectors: Do not use bad sectors in future 
● How does this impact performance contract??
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Flash Memory: NAND Cell

https://www.cactus-tech.com/resources/blog/details/solid-state-drive-primer-1-the-basic-nand-flash-cell/
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Flash Memory: NAND Cell

Reading

0 1
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Flash Memory: NAND Cell

Writing

0 1
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Flash Memory
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Flash Memory
● Page Size: 512 - 4K bytes.
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Write needs complete erasure
● We cannot set each cell from 0 to 1 (discharging), but can set 1 to 0 

(charging)

● To change a 0 to 1:
● We need to erase entire block to 1
● And change the required cells to 0 

● Writes are more expensive than reads.
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Flash Memory : SSD
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SSD : Flash Translation Layer
● Maps logical blocks to real blocks.

● Hides erase before write.

● Maintains free blocks.


